On difference equations with asymptotically stable 2-cycles perturbed by a decaying noise

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers

In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

Biological populations obeying difference equations: stable points, stable cycles, and chaos.

For biological populations with nonoverlapping generations, population growth takes place in discrete time steps and is described by difference equations. Some of the simplest such nonlinear difference equations can exhibit a remarkrible spectrum of dynamical behavior, from stable equilibrium points, to stable cyclic oscillations between two population points, to stable cycles with four points,...

متن کامل

Further Results on Lyapunov Functions and Domains of Attraction for Perturbed Asymptotically Stable Systems

We present new theorems characterizing robust Lyapunov functions and infinite horizon value functions in optimal control as unique viscosity solutions of partial differential equations. We use these results to further extend Zubov’s method for representing domains of attraction in terms of partial differential equation solutions.

متن کامل

Peak Effects in Stable Linear Difference Equations

We consider asymptotically stable scalar difference equations with unit-norm initial conditions. First, it is shown that the solution may happen to deviate far away from the equilibrium point at finite time instants prior to converging to zero. Second, for a number of root distributions and initial conditions, exact values of deviations or lower bounds are provided. Several specific difference ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2012

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2012.01.057